JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    The kernel of the Gysin homomorphism for Chow groups of zero cycles.

    • Autor
      Schoemann, Claudia
    • Fecha
      2023
    • Palabras clave
      Geometría algebraica; Topología algebraica
    • Resumen
      Let S be a smooth projective surface over a field k, and let C be a smooth hyperplane section of S. For a closed embedding of S into a projective space P consider the linear system Σ of hyperplane sections and the corresponding discriminant locus ∆ of singular hyperplane sections in the dual space. Let U := Σ \ ∆. Let CH0(S) and CH0(C) be the Chow groups of 0-cycles of degree 0 of S and C, respectively. We prove that the kernel of the Gysin homomorphism from CH0(C) to CH0(S) induced by the closed embedding of C into S is the countable union of shifts of a certain abelian subvariety A inside J(C), the Jacobian of the curve C. Moreover, for a Zariski countable open subset V in U , for every closed point t in V, either A at t coincides with a certain abelian variety Bt inside J(C), and then the Gysin kernel is a countable union of shifts of Bt, or A at t is 0, in which case the Gysin kernel is countable. The subset V being countable open allows to apply the irreducibility of the monodromy representation on the vanishing cohomology of a smooth section (for the étale cohomology and for the singular cohomology in a Hodge theoretical context for complex algebraic varieties). We aim to describe the Gysin kernel for the points t in U \ V where the local and global monodromy representations are not fully understood. The approach is to construct a stratification {Ui ⊆ U }i∈I of U by countable open subsets with I an at most countable, partially ordered set, for each of which the monodromy argument applies. We then apply a convergence argument for the stratification {Ui}i∈I such that the monodromy argument applies for U seen as the set-theoretic directed union of all Ui.
    • URI
      https://hdl.handle.net/10630/27226
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Talk_INSEGTO_Gysin.kernel_21.Juni.2023.pdf (283.2Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA