JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentros

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMASHERPA/RoMEODulcinea
    Preguntas frecuentesManual de usoDerechos de autorContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Economía y Administración de Empresas - (EAE)
    • EAE - Contribuciones a congresos científicos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Economía y Administración de Empresas - (EAE)
    • EAE - Contribuciones a congresos científicos
    • Ver ítem

    Effects of recommender systems different information based on tourism behaviour intention.

    • Autor
      Pérez-Aranda, Javier RamónAutoridad Universidad de Málaga; Chen, Fang-WeiAutoridad Universidad de Málaga; Alarcón-Urbistondo, María del PilarAutoridad Universidad de Málaga
    • Fecha
      2023
    • Palabras clave
      Consumidores - Conducta; Turismo - Métodos estadísticos
    • Resumen
      Tourism recommender systems include multiple information tools to foster booking decisions. Based on an experimental methodology, this research objective is to determine if there exist differences in the determinants of behavioural intention. Two randomly selected samples of university students were collected for each scenario designed, one using an artificial intelligence-based recommender system and another using a traditional information-based recommender system. The choices were in all cases unknown brands, and each sample unit had the following similar characteristics to avoid bias: frequent online tourism agencies' usage; travelling at least once during the last year; the accommodation chosen for this research should not be familiar to them. The study results confirmed a positive effect of the determinants studied in both recommender systems analysed. In addition, some differences were discovered. For the case of an artificial intelligence-based recommender system, the effect of perceived quality on satisfaction is double, and the effect of satisfaction in behaviour intention is also higher. These results highlight which antecedents of the tourist booking decision-making process are more deeply impacted by including artificial intelligence-based information of choices in recommender systems. Moreover, our results may help hoteliers and marketers understand the possible effects of artificial intelligence inclusion in recommender systems on tourist decision making and behaviour intention.
    • URI
      https://hdl.handle.net/10630/27577
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    FW_Recommender systems10-11-22.pdf (23.75Mb)
    Colecciones
    • EAE - Contribuciones a congresos científicos

    Estadísticas

    Ver Estadísticas de uso
    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA