JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    An Efficient QAOA via a Polynomial QPU-Needless Approach.

    • Autor
      Chicano-García, José-FranciscoAutoridad Universidad de Málaga; Dahi, Zakaria Abdelmoiz; Luque-Polo, Gabriel JesúsAutoridad Universidad de Málaga
    • Fecha
      2023
    • Palabras clave
      Matemáticas computacionales; Optimización combinatoria; Computación cuántica
    • Resumen
      The Quantum Approximate Optimization Algorithm (QAOA) is a hybrid quantum algorithm described as ansatzes that represent both the problem and the mixer Hamiltonians. Both are parameterizable unitary transformations executed on a quantum machine/simulator and whose parameters are iteratively optimized using a classical device to optimize the problem’s expectation value. To do so, in each QAOA iteration, most of the literature uses a quantum machine/simulator to measure the QAOA outcomes. However, this poses a severe bottleneck considering that quantum machines are hardly constrained (e.g. long queuing, limited qubits, etc.), likewise, quantum simulation also induces exponentially-increasing memory usage when dealing with large problems requiring more qubits. These limitations make today’s QAOA implementation impractical since it is hard to obtain good solutions with a reasonably-acceptable time/resources. Considering these facts, this work presents a new approach with two main contributions, including (I) removing the need for accessing quantum devices or large-sized classical machines during the QAOA optimization phase, and (II) ensuring that when dealing with some 𝑘-bounded pseudo-Boolean problems, optimizing the exact problem’s expectation value can be done in polynomial time using a classical computer.
    • URI
      https://hdl.handle.net/10630/27752
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    main-riuma.pdf (716.9Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA