Pair Distribution Function analysis (PDF) is a total X-ray scattering technique, including the diffuse scattering and the Bragg diffraction. Thus, PDF can be used to characterize structural domains of amorphous solids to investigate local order/properties correlations [1].
Herein, a follow-up of the chemical evolution of pyrophosphate- or phosphide-based Fe/Co electrocatalysts is carried out by synchrotron PDF analysis. The catalysts were prepared from the metal (R,S) 2-hydroxyphosphonoacetates by pyrolysis in N2 (500 ºC and 700 ºC) or 5%-H2/Ar (800 ºC) and studied toward the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Comparison of PDF patterns of the amorphous (500 ºC) and the semicrystalline Fe/Co pyrophosphates (700 ºC) showed that the local order of the amorphous solid is composed of nanoclusters of ~ 7 Å (Figure 1). In contrast, the PDF pattern of the Fe/Co phosphide (800 ºC) is formed by a mixed of the crystalline phases o-Co2P and o-CoP. Differential PDF (d-PDF) analysis of the spent catalysts revealed that, irrespectively of the amorphous or crystalline nature, all pyrolyzed solids transformed under OER operation into biphasic CoO(OH), composed of discrete clusters with size ≤ 20 Å