JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Tight and Compact Sample Average Approximation for Joint Chance-Constrained Problems with Applications to Optimal Power Flow.

    • Autor
      Porras, Álvaro; Domínguez Sánchez, Concepción; Morales-González, Juan MiguelAutoridad Universidad de Málaga; Pineda-Morente, SalvadorAutoridad Universidad de Málaga
    • Fecha
      2023-08-02
    • Editorial/Editor
      INFORMS
    • Palabras clave
      Optimización matemática; Investigación operativa; Optimización combinatoria; Programación de enteros
    • Resumen
      In this paper, we tackle the resolution of chance-constrained problems reformulated via sample average approximation. The resulting data-driven deterministic reformulation takes the form of a large-scale mixed-integer program (MIP) cursed with Big-Ms. We introduce an exact resolution method for the MIP that combines the addition of a set of valid inequalities to tighten the linear relaxation bound with coefficient strengthening and constraint screening algorithms to improve its Big-Ms and considerably reduce its size. The proposed valid inequalities are based on the notion of k-envelopes and can be computed off-line using polynomial-time algorithms and added to the MIP program all at once. Furthermore, they are equally useful to boost the strengthening of the Big-Ms and the screening rate of superfluous constraints. We apply our procedures to a probabilistically constrained version of the DC optimal power flow problem with uncertain demand. The chance constraint requires that the probability of violating any of the power system’s constraints be lower than some positive threshold. In a series of numerical experiments that involve five power systems of different size, we show the efficiency of the proposed methodology and compare it with some of the best performing convex inner approximations currently available in the literature.
    • URI
      https://hdl.handle.net/10630/27970
    • DOI
      https://dx.doi.org/10.1287/ijoc.2022.0302
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    porras-et-al-2023-tight-and-compact.pdf (2.142Mb)
    ijoc.2022.0302.sm1.pdf (526.0Kb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA