JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Ant-colony optimization for automating test model generation in model transformation testing.

    • Autor
      Karimi, Meysam; Kolahdouz-Rahimi, Shekoufeh; Troya-Castilla, JavierAutoridad Universidad de Málaga
    • Fecha
      2023-11-04
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Algoritmos computacionales; Investigación operativa; Optimización combinatoria; Ingeniería del software
    • Resumen
      In model transformation (MT) testing, test data generation is of key importance. However, test suites are not available out of the box, and existing approaches to generate them require to provide not only the metamodel to which the models must conform, but some other domain-specific artifacts. For instance, an MT developer aiming to perform an incremental implementation of an MT may need to count on a quality test suite from the very beginning, even before all MT requirements are clear, only having the metamodels as input. We propose a black-box approach for the generation of test models where only the input metamodel of the MT is available. We propose an Ant-Colony Optimization algorithm for the search of test models satisfying the objectives of maximizing internal diversity and maximizing external diversity. We provide a tool prototype that implements this approach and generates the models in the well-established XMI interchange format. A comparison study with state-of-the-art frameworks shows that models are generated in reasonable times with low memory consumption. We empirically demonstrate the adequacy of our approach to generate effective test models, obtaining an overall mutation score above 80% from an evaluation with more than 5000 MT mutants.
    • URI
      https://hdl.handle.net/10630/27976
    • DOI
      https://dx.doi.org/10.1016/j.jss.2023.111882
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    JSS2023_PrePrint (1).pdf (436.1Kb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA