JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Assessing Physical Activity and Functional Fitness Level Using Convolutional Neural Networks.

    • Autor
      Galán Mercant, Alejandro; Ortiz-García, AndrésAutoridad Universidad de Málaga; Herrera Viedma, Enrique; Tomas, Maria Teresa; Fernandes, Beatriz; Moral-Muñoz, Jose A.
    • Fecha
      2019-12-01
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Redes neuronales (Informática); Ejercicio físico - Evaluación; Ancianos - Condición física
    • Resumen
      Older adults are related to a reduction in physical functionality, as a result of a musculoskeletal system degeneration. In that way, physical exercise has been stated as a suitable intervention to prevent such health problems. Therefore, an adequate assessment of the physical activity and functional fitness levels is needed to plan the individualized intervention. A broad test used to assess the functional fitness level is the 6-minutes walk test (6MWT). It has been previously measured using accelerometer sensors. In views of this background, the main aim of the present study is to use deep learning to extract automatically and to predict the physical activity and functional fitness levels of the older adults through the acceleration signals recorded by a smartphone during the 6MWT. A total of 17 participants were recruited. Anthropometric measurements (weight, height, and body mass index), physical activity, and functional fitness levels from each participant were recorded. Consecutively, two deep learning-based methods were applied to determine the prediction. According to the results, the proposed method can predict physical activity and functional fitness levels with high accuracy, even using only one cycle. Thus, the approach described in the present work could be implemented in future mobile health systems to identify the physical activity profile of older adults.
    • URI
      https://hdl.handle.net/10630/28103
    • DOI
      https://dx.doi.org/10.1016/j.knosys.2019.104939
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    KNOSYS_v3.pdf (2.763Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA