Mostrar el registro sencillo del ítem

dc.contributor.authorCastillo-Barnes, Diego
dc.contributor.authorMartínez-Murcia, Francisco J.
dc.contributor.authorOrtiz-García, Andrés 
dc.contributor.authorSalas-González, Diego
dc.contributor.authorRamírez, Javier
dc.contributor.authorGórriz-Sáez, Juan Manuel
dc.date.accessioned2023-11-22T13:03:36Z
dc.date.available2023-11-22T13:03:36Z
dc.date.issued2020-08-12
dc.identifier.citationCastillo-Barnes, Diego & Martinez-Murcia, Francisco & Ortiz, Andrés & Salas-Gonzalez, Diego & Ramírez, Javier & Gorriz, Juan. (2020). Morphological Characterization of Functional Brain Imaging by Isosurface Analysis in Parkinson'S Disease. International Journal of Neural Systems. 30. 10.1142/S0129065720500446.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/28113
dc.description.abstractFinding new biomarkers to model Parkinson’s Disease (PD) is a challenge not only to help discerning between Healthy Control (HC) subjects and patients with potential PD, but also as a way to measure quantitatively the loss of dopaminergic neurons mainly concentrated at substantia nigra. Within this context, the work presented here tries to provide a set of imaging features based on morphological characteristics extracted from I[123]-Ioflupane SPECT scans to discern between HC and PD participants in a balanced set of 386 scans from Parkinson’s Progression Markers Initiative (PPMI) database. These features, obtained from isosurfaces of each scan at different intensity levels, have been classified through the use of classical Machine Learning classifiers such as Support-Vector-Machines (SVM) or Na¨ıve Bayesian and compared with the results obtained using a Multi-Layer Perceptron (MLP). The proposed system, based on a Mann-Whitney-Wilcoxon U-Test for feature selection and the SVM approach, yielded a 97.04% balanced accuracy when the performance was evaluated using a 10-fold cross-validation. This proves the reliability of these biomarkers, especially those related to sphericity, center of mass, number of vertices, 2D-projected perimeter or the 2D-projected eccentricity; among others, but including both internal and external isosurfaces.es_ES
dc.description.sponsorshipThis work was supported by the MINECO/FEDER under the RTI2018-098913-B-I00 and PGC2018- 098813-B-C32 projects and the General Secretariat of Universities, Research and Technology, Junta de Andalucía under the Excellence FEDER Project ATIC-117-UGR18.es_ES
dc.language.isospaes_ES
dc.publisherWorld Scientifices_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectParkinson, Enfermedad de - Imágeneses_ES
dc.subjectCerebro - Imágeneses_ES
dc.subjectDiagnóstico por imagenes_ES
dc.subjectMedicina - Proceso de datoses_ES
dc.subjectDiagnóstico - Proceso de datoses_ES
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subject.otherParkinson’s Diseasees_ES
dc.subject.otherNeuroimaginges_ES
dc.subject.otherIsosurfaceses_ES
dc.subject.otherParkinson’s Progression Markers Initiative (PPMI)es_ES
dc.subject.otherSingle Photon Emission Computed Tomography (SPECT)es_ES
dc.subject.otherComputer-Aided- Diagnosis (CAD)es_ES
dc.subject.otherSupervised learninges_ES
dc.subject.otherMachine learninges_ES
dc.titleMorphological Characterization of Functional Brain Imaging by Isosurface Analysis in Parkinson’s Disease.es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.identifier.doi10.1142/S0129065720500446
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersiones_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional