JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    PCA filtering and Probabilistic SOM for Network Intrusion Detection.

    • Autor
      De la Hoz Correa, Eduardo; De la Hoz Franco, Emiro; Ortiz-García, AndrésAutoridad Universidad de Málaga; Ortega, Julio; Prieto, Beatriz
    • Fecha
      2015-09-21
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Estadística bayesiana; Redes neuronales (Informática); Análisis en componentes principales; Seguridad informática
    • Resumen
      The growth of the Internet and, consequently, the number of interconnected computers, has exposed significant amounts of information to intruders and attackers. Firewalls aim to detect violations according to a predefined rule-set and usually block potentially dangerous incoming traffic. However, with the evolution of attack techniques, it is more difficult to distinguish anomalies from normal traffic. Different detection approaches have been proposed, including the use of machine learning techniques based on neural models such as Self-Organizing Maps (SOMs). In this paper, we present a classification approach that hybridizes statistical techniques and SOM for network anomaly detection. Thus, while Principal Component Analysis (PCA) and Fisher Discriminant Ratio (FDR) have been considered for feature selection and noise removal, Probabilistic Self-Organizing Maps (PSOM) aim to model the feature space and enable distinguishing between normal and anomalous connections. The detection capabilities of the proposed system can be modified without retraining the map, but only by modifying the units activation probabilities. This deals with fast implementations of Intrusion Detection Systems (IDS) necessary to cope with current link bandwidths.
    • URI
      https://hdl.handle.net/10630/28118
    • DOI
      https://dx.doi.org/10.1016/j.neucom.2014.09.083
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    NEUCOM_2015.pdf (295.3Kb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA