Mostrar el registro sencillo del ítem

dc.contributor.authorDe la Hoz Correa, Eduardo
dc.contributor.authorDe la Hoz Franco, Emiro
dc.contributor.authorOrtiz-García, Andrés 
dc.contributor.authorOrtega, Julio
dc.contributor.authorPrieto, Beatriz
dc.date.accessioned2023-11-23T07:25:07Z
dc.date.available2023-11-23T07:25:07Z
dc.date.issued2015-09-21
dc.identifier.citationOrtiz, Andrés & Hoz, Eduardo & De la Hoz, Emiro & Ortega, Julio & Prieto, Beatriz. (2014). PCA filtering and Probabilistic SOM for Network Intrusion Detection. Neurocomputing.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/28118
dc.description.abstractThe growth of the Internet and, consequently, the number of interconnected computers, has exposed significant amounts of information to intruders and attackers. Firewalls aim to detect violations according to a predefined rule-set and usually block potentially dangerous incoming traffic. However, with the evolution of attack techniques, it is more difficult to distinguish anomalies from normal traffic. Different detection approaches have been proposed, including the use of machine learning techniques based on neural models such as Self-Organizing Maps (SOMs). In this paper, we present a classification approach that hybridizes statistical techniques and SOM for network anomaly detection. Thus, while Principal Component Analysis (PCA) and Fisher Discriminant Ratio (FDR) have been considered for feature selection and noise removal, Probabilistic Self-Organizing Maps (PSOM) aim to model the feature space and enable distinguishing between normal and anomalous connections. The detection capabilities of the proposed system can be modified without retraining the map, but only by modifying the units activation probabilities. This deals with fast implementations of Intrusion Detection Systems (IDS) necessary to cope with current link bandwidths.es_ES
dc.description.sponsorshipThis work has been funded by the Ministerio de Ciencia e Innovación of the Spanish Government and FEDER Funds under Project no. TIN2012-32039. The authors would like to thank the reviewers for their useful comments and suggestions.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectEstadística bayesianaes_ES
dc.subjectRedes neuronales (Informática)es_ES
dc.subjectAnálisis en componentes principaleses_ES
dc.subjectSeguridad informáticaes_ES
dc.subject.otherProbabilistic SOMes_ES
dc.subject.otherBayesian SOMes_ES
dc.subject.otherIDSes_ES
dc.subject.otherSelf-Organizing Mapses_ES
dc.subject.otherPCA filteringes_ES
dc.titlePCA filtering and Probabilistic SOM for Network Intrusion Detection.es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.identifier.doi10.1016/j.neucom.2014.09.083
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional