JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Invariant ideals in Leavitt path algebras.

    • Autor
      Gil-Canto, CristóbalAutoridad Universidad de Málaga; Martín-Barquero, DoloresAutoridad Universidad de Málaga; Martín-González, CándidoAutoridad Universidad de Málaga
    • Fecha
      2020-06-23
    • Editorial/Editor
      Universitat Autònoma de Barcelona, Departament de Matemàtiques. Revista: Publications Matematiques
    • Palabras clave
      Álgebra
    • Resumen
      It is known that the ideals of a Leavitt path algebra LK (E) generated by Pl(E), by Pc(E) or by Pec(E) are invariant under isomorphism. Though the ideal generated by Pb∞ (E) is not invariant we find its “natural” replacement (which is indeed invariant): the one generated by the vertices of Pb∞ p (vertices with pure infinite bifurcations). We also give some procedures to construct invariant ideals from previous known invariant ideals. One of these procedures involves topology, so we introduce the DCC topology and relate it to annihilators in the algebraic counterpart of the work. To be more explicit: if H is a hereditary saturated subset of vertices providing an invariant ideal, its exterior ext(H) in the DCC topology of E0 generates a new invariant ideal. The other constructor of invariant ideals is more categorical in nature. Some hereditary sets can be seen as functors from graphs to sets (for instance Pl, etc). Thus a second method emerges from the possibility of applying the induced functor to the quotient graph. The easiest example is the known socle chain Soc(1)( ) ⊆ Soc(2)( ) ⊆ · · · all of which are proved to be invariant. We generalize this idea to any hereditary and saturated invariant functor. Finally we investigate a kind of composition of hereditary and saturated functors which is associative
    • URI
      https://hdl.handle.net/10630/28159
    • DOI
      https://dx.doi.org/10.5565/PUBLMAT6622203
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Invariant.pdf (449.0Kb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA