JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Tesis doctorales
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Tesis doctorales
    • Ver ítem

    Accelerating Time Series Analysis via Near-Data-Processing Approaches

    • Autor
      Fernández-Vega, Iván
    • Director/es
      Plata-González, Óscar GuillermoAutoridad Universidad de Málaga; Gutiérrez-Carrasco, Eladio DamiánAutoridad Universidad de Málaga
    • Fecha
      2023
    • Fecha de lectura
      2023-06-30
    • Editorial/Editor
      UMA Editorial
    • Palabras clave
      Análisis de series temporales; Ordenadores - Memorias; Arquitectura de ordenadores - Tesis doctorales
    • Resumen
      The explosion of the Internet-Of-Things and Big Data era has resulted in the continuous generation of a very large amount of data, which is increasingly difficult to store and analyze. Such a collection of data is also referred to as a time series, a common data representation in almost every scientific discipline and business application. Time series analysis (TSA) splits the time series into subsequences of consecutive data points to extract valuable information. In this thesis, we characterize state-of-the-art TSA algorithms and find their bottlenecks in commodity computing platforms. We observe that the performance and energy efficiency of TSA algorithms are heavily burdened by data movement. Based on that, we propose software and hardware solutions to accelerate time series analysis and make its computation as energy-efficient as possible. To this end, we provide four contributions: PhiTSA, NATSA, MATSA and TraTSA. PhiTSA optimizes and characterizes state-of-the-art TSA algorithms in a many-core Intel Xeon Phi KNL platform. NATSA is a novel Processing-Near-Memory accelerator for TSA. This accelerator places custom floating-point processing units close to High-Bandwidth-Memory, exploiting its memory channels and the lower latency of accesses. MATSA is a novel Processing-Using-Memory accelerator for TSA, known as MATSA. The key idea is to exploit magneto-resistive memory crossbars to enable energy-efficient and fast time series computation in memory while overcoming endurance issues of other non-volatile memory technologies. Finally, TraTSA evaluates the benefits of applying Transprecision Computing to TSA, where the number of bits dedicated to floating-point operations is reduced.
    • URI
      https://hdl.handle.net/10630/28214
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    TD_FERNANDEZ_VEGA_Ivan.pdf (5.607Mb)
    Colecciones
    • Tesis doctorales

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA