Mostrar el registro sencillo del ítem

dc.contributor.authorGouiaa, Fatma
dc.contributor.authorVomo-Donfack, Kelly L.
dc.contributor.authorTran-Dinh, Alexy
dc.contributor.authorMorilla, Ian
dc.date.accessioned2024-01-10T10:38:05Z
dc.date.available2024-01-10T10:38:05Z
dc.date.issued2024-01-04
dc.identifier.citationFatma Gouiaa, Kelly L. Vomo-Donfack, Alexy Tran-Dinh, Ian Morilla, Novel dimensionality reduction method, Taelcore, enhances lung transplantation risk prediction, Computers in Biology and Medicine, Volume 169, 2024, 107969, ISSN 0010-4825, https://doi.org/10.1016/j.compbiomed.2024.107969es_ES
dc.identifier.urihttps://hdl.handle.net/10630/28583
dc.description.abstractIn this work, we present a new approach to predict the risk of acute cellular rejection (ACR) after lung transplantation by using machine learning algorithms, such as Multilayer Perceptron (MLP) or Autoencoder (AE), and combining them with topological data analysis (TDA) tools. Our proposed method, named topological autoencoder with best linear combination for optimal reduction of embeddings (Taelcore), effectively reduces the dimensionality of high-dimensional datasets and yields better results compared to other models. We validate the effectiveness of Taelcore in reducing the prediction error rate on four datasets. Furthermore, we demonstrate that Taelcore’s topological improvements have a positive effect on the majority of the machine learning algorithms used. By providing a new way to diagnose patients and detect complications early, this work contributes to improved clinical outcomes in lung transplantation.es_ES
dc.description.sponsorshipFunding for open Access charge: Universidad de Málaga / CBUA. We would like to thank the funding from the National Research Association (ANR) (Inflamex renewal 10-LABX-0017 to I Morilla), Consejería de Universidades, Ciencias 𝑦 Desarrollo, fondos FEDER de la Junta de Andalucía (ProyExec_0499 to I Morilla), DHU FIRE Emergence 4, and the l’Agence de la Biomedecine.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBiología moleculares_ES
dc.subject.otherAcute cellular rejectiones_ES
dc.subject.otherTopological data analysises_ES
dc.subject.otherMachine learninges_ES
dc.subject.otherPredictor of ACR riskes_ES
dc.titleNovel dimensionality reduction method, Taelcore, enhances lung transplantation risk predictiones_ES
dc.typejournal articlees_ES
dc.centroFacultad de Cienciases_ES
dc.identifier.doi10.1016/j.compbiomed.2024.107969
dc.type.hasVersionVoRes_ES
dc.departamentoBiología Molecular y Bioquímica
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem