JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Identifying HRV patterns in ECG signals as early markers of dementia

    • Autor
      Arco, Juan E.; Gallego-Molina, Nicolás J.; Ortiz-García, AndrésAutoridad Universidad de Málaga; Arroyo-Alvis, Katy; López-Pérez, P. Javier
    • Fecha
      2023-12-15
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Electrocardiografía; Demencia; Procesado de señales
    • Resumen
      The appearance of Artificial Intelligence (IA) has improved our ability to process large amount of data. These tools are particularly interesting in medical contexts, in order to evaluate the variables from patients’ screening analysis and disentangle the information that they contain. We propose in this work a novel method for evaluating the role of electrocardiogram (ECG) signals in the human cognitive decline. This framework offers a complete solution for all the steps in the classification pipeline, from the preprocessing of the raw signals to the final classification stage. Numerous metrics are computed from the original data in terms of different domains (time, frequency, etc.), and dimensionality is reduced through a Principal Component Analysis (PCA). The resulting characteristics are used as inputs of different classifiers (linear/non-linear Support Vector Machines, Random Forest, etc.) to determine the amount of information that they contain. Our system yielded an area under the Receiver Operating Characteristic (ROC) curve of 0.80 identifying Mild Cognitive Impairment (MCI) patients, showing that ECG contain crucial information for predicting the appearance of this pathology. These results are specially relevant given the fact that ECG acquisition is much more affordable and less invasive than brain imaging used in most of these intelligent systems, allowing our method to be used in environments of any socioeconomic range.
    • URI
      https://hdl.handle.net/10630/28866
    • DOI
      https://dx.doi.org/10.1016/j.eswa.2023.122934
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S095741742303436X-main.pdf (1.203Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA