JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Lead-free piezocomposites with CNT-modified matrices: Accounting for agglomerations and molecular defects.

    • Autor
      Krishnaswamy, Jagdish A.; Buroni, Federico C.; García-Sánchez, FelipeAutoridad Universidad de Málaga; Melnik, Roderick; Rodríguez de Tembleque, Luis; Sáez, Andrés
    • Fecha
      2019-05-23
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Piezoelectricidad; Materiales inteligentes; Método de los elementos finitos
    • Resumen
      Piezoelectric matrix-inclusion composites based on lead-free ceramics have attracted attention due to the possibility of manufacturing environmentally friendly devices using scalable emerging technologies such as 3D printing. However, lead-free materials lag lead-based piezo-composites in terms of performance, thus necessitating new design strategies to escalate piezoelectric response. Here, we build a modeling paradigm for improving the piezoelectric performance through improved matrices and optimal polycrystallinity in the piezoelectric inclusions. By incorporating carbon nanotubes in the matrix, we demonstrate 2-3 orders of improvement in the piezoelectric response, through simultaneous hardening of the matrix and improvement in its permittivity. By tuning the polycrystallinity of the piezoelectric inclusions, we show considerable improvements exceeding 50% in the piezo-response, compared to single crystal inclusions. We further analyze the influence of carbon nanotube agglomerations at supramolecular length scales, as well as vacancy defects in the nanotubes at the atomic level, on composite performance. Although nanomaterial agglomeration is conventionally considered undesirable, we show that, near nanotube percolation, clustering of nanotubes can lead to better matrix hardening and higher permittivities, leading to improvements exceeding 30% in the piezoelectric response compared to non-agglomerated architectures. We further demonstrate that although atomic vacancy defects in nanotubes effectively soften the matrix, this can be compensated by agglomeration of nanotubes at larger length-scales.
    • URI
      https://hdl.handle.net/10630/29031
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    AcceptedManuscript_COST111033 .pdf (2.609Mb)
    Colecciones
    • Artículos

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA