JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    A deep learning LSTM-based approach for forecasting annual pollen curves: Olea and Urticaceae pollen types as a case study

    • Autor
      Picornell Rodríguez, Antonio; Hurtado-Requena, Sandro JoséAutoridad Universidad de Málaga; Antequera-Gómez, María Luisa; Barba-González, CristóbalAutoridad Universidad de Málaga; Ruiz-Mata, Rocío; De Gálvez-Montañez, Enrique; Recio-Criado, María MartaAutoridad Universidad de Málaga; Trigo-Pérez, María del MarAutoridad Universidad de Málaga; Aldana-Montes, José FranciscoAutoridad Universidad de Málaga; Navas-Delgado, IsmaelAutoridad Universidad de Málaga
    • Fecha
      2023-11-16
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Fisiología vegetal; Botánica; Polen
    • Resumen
      Airborne pollen can trigger allergic rhinitis and other respiratory diseases in the synthesised population, which makes it one of the most relevant biological contaminants. Therefore, implementing accurate forecast systems is a priority for public health. The current forecast models are generally useful, but they falter when long time series of data are managed. The emergence of new computational techniques such as the LSTM algorithms could constitute a significant improvement for the pollen risk assessment. In this study, several LSTM variants were applied to forecast monthly pollen integrals in Málaga (southern Spain) using meteorological variables as predictors. Olea and Urticaceae pollen types were modelled as proxies of different annual pollen curves, using data from the period 1992–2022. The aims of this study were to determine the LSTM variants with the highest accuracy when forecasting monthly pollen integrals as well as to compare their performance with the traditional pollen forecast methods. The results showed that the CNN-LSTM were the most accurate when forecasting the monthly pollen integrals for both pollen types. Moreover, the traditional forecast methods were outperformed by all the LSTM variants. These findings highlight the importance of implementing LSTM models in pollen forecasting for public health and research applications.
    • URI
      https://hdl.handle.net/10630/29461
    • DOI
      https://dx.doi.org/10.1016/j.compbiomed.2023.107706
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S001048252301171X-main.pdf (2.266Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA