JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Beyond REM: A New Approach to the Use of Image Classifiers for the Management of 6G Networks

    • Autor
      Baena-Martínez, EduardoAutoridad Universidad de Málaga; Fortes-Rodríguez, SergioAutoridad Universidad de Málaga; Muro, Francisco; Baena, Carlos; Barco-Moreno, RaquelAutoridad Universidad de Málaga
    • Fecha
      2023-08-29
    • Editorial/Editor
      MDPI
    • Palabras clave
      Sistemas de telecomunicaciones; Imágenes - Transmisión
    • Resumen
      The management of cellular networks, particularly within the environment rapidly advancing to 6G, presents considerable challenges due to the highly dynamic radio environment. Traditional tools such as Radio Environment Maps (REMs) have proven inadequate for real-time network changes, underlining the need for more sophisticated solutions. In response to these challenges, this work introduces a novel approach that harnesses the unprecedented power of state-of-the-art image classifiers for network management. This method involves the generation of Network Synthetic Images (NSIs), which are enriched heat maps that precisely reflect varying cellular network operating states. Created from user location traces linked with Key Performance Indicators (KPIs), NSIs are strategically designed to meet the intricate demands of 6G networks. This research delves deep into a comprehensive analysis of the diverse factors that could potentially impact the successful application of this methodology in the realm of 6G. The results from this investigation, coupled with a comparative assessment against traditional REM usage, emphasize the superior performance of this innovative method. Additionally, a case study involving an automatic network diagnosis scenario validates the effectiveness of this approach. The findings reveal that a generic Convolutional Neural Network (CNN), one of the most powerful tools in the arsenal of modern image classifiers, delivers enhanced performance, even with a reduced demand for positioning accuracy. This contributes significantly to the real-time, robust management of cellular networks as we transition into the era of 6G.
    • URI
      https://hdl.handle.net/10630/29520
    • DOI
      https://dx.doi.org/10.3390/s23177494
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    sensors-23-07494.pdf (1.269Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA