JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    MOODY: An ontology-driven framework for standardizing multi-objective evolutionary algorithms

    • Autor
      Aldana Martín, José Francisco; Roldán-García, María del MarAutoridad Universidad de Málaga; Nebro-Urbaneja, Antonio JesúsAutoridad Universidad de Málaga; Aldana-Montes, José FranciscoAutoridad Universidad de Málaga
    • Fecha
      2024-01-23
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Computación evolutiva; Redes neuronales (Informática)
    • Resumen
      The application of semantic technologies, particularly ontologies, in the realm of multi-objective evolutionary algorithms is overlook despite their effectiveness in knowledge representation. In this paper, we introduce MOODY, an ontology specifically tailored to formalize these kinds of algorithms, encompassing their respective parameters, and multi-objective optimization problems based on a characterization of their search space landscapes. MOODY is designed to be particularly applicable in automatic algorithm configuration, which involves the search of the parameters of an optimization algorithm to optimize its performance. In this context, we observe a notable absence of standardized components, parameters, and related considerations, such as problem characteristics and algorithm configurations. This lack of standardization introduces difficulties in the selection of valid component combinations and in the re-use of algorithmic configurations between different algorithm implementations. MOODY offers a means to infuse semantic annotations into the configurations found by automatic tools, enabling efficient querying of the results and seamless integration across diverse sources through their incorporation into a knowledge graph. We validate our proposal by presenting four case studies.
    • URI
      https://hdl.handle.net/10630/29583
    • DOI
      https://dx.doi.org/10.1016/j.ins.2024.120184
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S0020025524000975-main.pdf (1.244Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA