Mostrar el registro sencillo del ítem
Foreground detection by competitive learning for varying input distributions
dc.contributor.author | López-Rubio, Ezequiel | |
dc.contributor.author | Molina-Cabello, Miguel Ángel | |
dc.contributor.author | Luque-Baena, Rafael Marcos | |
dc.contributor.author | Domínguez-Merino, Enrique | |
dc.date.accessioned | 2024-02-02T09:47:35Z | |
dc.date.available | 2024-02-02T09:47:35Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | López-Rubio E, Molina-Cabello MA, Luque-Baena RM, Domínguez E. Foreground Detection by Competitive Learning for Varying Input Distributions. Int J Neural Syst. 2018 Jun;28(5):1750056. doi: 10.1142/S0129065717500563. | es_ES |
dc.identifier.uri | https://hdl.handle.net/10630/29690 | |
dc.description | Copyright Owner. Versión definitiva disponible en el DOI indicado. López-Rubio, E., Molina-Cabello, M. A., Luque-Baena, R. M., & Domínguez, E. (2018). Foreground detection by competitive learning for varying input distributions. International journal of neural systems, 28(05), 1750056. | es_ES |
dc.description.abstract | One of the most important challenges in computer vision applications is the background modeling, especially when the background is dynamic and the input distribution might not be stationary, i.e. the distribution of the input data could change with time (e.g. changing illuminations, waving trees, water, etc.). In this work, an unsupervised learning neural network is proposed which is able to cope with progressive changes in the input distribution. It is based on a dual learning mechanism which manages the changes of the input distribution separately from the cluster detection. The proposal is adequate for scenes where the background varies slowly. The performance of the method is tested against several state-of-the-art foreground detectors both quantitatively and qualitatively, with favorable results. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | World Scientific Publishing | es_ES |
dc.subject | Visión por ordenador | es_ES |
dc.subject | Reconocimiento de formas (Informática) | es_ES |
dc.subject.other | Computer vision | es_ES |
dc.subject.other | Foreground detection | es_ES |
dc.subject.other | Competitive learning | es_ES |
dc.subject.other | Stationary distribution | es_ES |
dc.title | Foreground detection by competitive learning for varying input distributions | es_ES |
dc.type | journal article | es_ES |
dc.identifier.doi | 10.1142/S0129065717500563 | |
dc.type.hasVersion | AM | es_ES |
dc.departamento | Lenguajes y Ciencias de la Computación | |
dc.rights.accessRights | open access | es_ES |