JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Mapping tillage direction and contour farming by object-based analysis of UAV images

    • Autor
      Lima-Cueto, Francisco JavierAutoridad Universidad de Málaga; Blanco-Sepúlveda, RafaelAutoridad Universidad de Málaga; Gómez-Moreno, María LuisaAutoridad Universidad de Málaga; Dorado, José; Peña, José Manuel
    • Fecha
      2021
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Suelos - Erosión
    • Resumen
      Tillage is a primary agricultural task that causes progressive soil movement and, consequently, severe erosion in sloping farmland, with a high impact on crop productivity, soil quality and landscape features. Accordingly, this research combined aerial images taken with unmanned aerial vehicles and object-based image analysis (OBIA) to develop an innovative OBIA4tillage procedure with three main objectives: (i) analysing plowed agricultural fields, identifying and mapping the tillage marks, and automatically computing the main direction of the tillage furrows, (ii) validating the procedure quality in different scenarios by evaluating the accuracy of the results as affected by the sensor used (visible-light vs. multispectral), background soil hue, and ground vegetation density; and (iii) mapping contour farming and non-contour farming areas as indicators of potential low and high soil erosion risk, respectively. Twenty olive parcels from two different locations with a wide range of tree sizes, soil hue, parcel shapes and land slopes were selected as model systems to develop and validate the procedure. The OBIA4tillage procedure produced tillage maps with very high accuracy for both RGB and multispectral images (R2 of 0.99 and 0.93, respectively), as obtained from the linear equation between estimated and groundtruth values. The results were similar in clear and dark soils (R2 of 0.96 in both cases), although there were notable differences between areas of dense ground vegetation or bare soil (R2 of 0.99 in both cases) and areas of medium vegetation cover (R2 of 0.81). The application of contour farming in the study region was moderate at location 1 (42.35% of the study area) but more widespread at location 2 (72.60% of the study area), which revealed the uneven involvement of the local farmers in the challenge of controlling soil erosion risks.
    • URI
      https://hdl.handle.net/10630/30034
    • DOI
      https://dx.doi.org/10.1016/j.compag.2021.106281
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    2Computers2021.pdf (714.9Kb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA