JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Deep learning-based anomalous object detection system for panoramic cameras managed by a Jetson TX2 board

    • Autor
      Benito-Picazo, Jesús; Domínguez-Merino, EnriqueAutoridad Universidad de Málaga; Palomo-Ferrer, Esteban JoséAutoridad Universidad de Málaga; Ramos-Jiménez, Gonzalo PascualAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga
    • Fecha
      2021
    • Editorial/Editor
      IEEE
    • Palabras clave
      Videovigilancia - Congresos
    • Resumen
      Social conflicts appearing in the media are increas ing public awareness about security issues, resulting in a higher demand of more exhaustive environment monitoring methods. Automatic video surveillance systems are a powerful assistance to public and private security agents. Since the arrival of deep learn ing, object detection and classification systems have experienced a large improvement in both accuracy and versatility. However, deep learning-based object detection and classification systems often require expensive GPU-based hardware to work properly. This paper presents a novel deep learning-based foreground anomalous object detection system for video streams supplied by panoramic cameras, specially designed to build power efficient video surveillance systems. The system optimises the process of searching for anomalous objects through a new potential detection generator managed by three different multivariant homoscedastic distributions. Experimental results obtained after its deployment in a Jetson TX2 board attest the good performance of the system, postulating it as a solvent approach to power saving video surveillance systems.
    • URI
      https://hdl.handle.net/10630/30310
    • DOI
      https://dx.doi.org/10.1109/IJCNN52387.2021.9534053
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    IJCNN2021_preprint.pdf (226.5Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA