JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    A data relocation approach for terrain surface analysis on multi-GPU systems: a case study on the total viewshed problem.

    • Autor
      Sánchez Fernández, Andrés Jesús; Romero-Gómez, Luis FelipeAutoridad Universidad de Málaga; Bandera-Burgueño, GerardoAutoridad Universidad de Málaga; Tabik, Siham
    • Fecha
      2020-12-04
    • Editorial/Editor
      Taylor & Francis
    • Palabras clave
      Sistemas de información geográfica; Geografía - Proceso de datos
    • Resumen
      Digital Elevation Models (DEMs) are important datasets for modelling line-of-sight phenomena such as radio signals, sound waves and human vision. These are commonly analysed using rotational sweep algorithms. However, such algorithms require large numbers of memory accesses to 2D arrays which, despite being regular, result in poor data locality in memory. This paper proposes a new methodology called skewed Digital Elevation Model (sDEM), which substantially improves the locality of memory accesses and largely increases the inherent parallelism involved in the computation of rotational sweep-based algorithms. In particular, sDEM applies a data restructuring technique before accessing the memory and performing the computation. To demonstrate the high efficiency of sDEM, we use the problem of total viewshed computation as a case study. Different implementations for single-core, multi-core, single-GPU and multi-GPU platforms are provided. We conducted two experiments in which sDEM is compared with (i) the most used geographic information systems (GIS) software and (ii) the state-of-the-art algorithm. In the first experiment, sDEM is in average 8.8x faster than current GIS software despite being able to consider only few points because of their limitations. In the second experiment, sDEM is 827.3x faster than the state-of-the-art algorithm, considering the best studied case
    • URI
      https://hdl.handle.net/10630/30394
    • DOI
      https://dx.doi.org/10.1080/13658816.2020.1844207
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    sDEM_IJGIS_R2_anonymized_manuscript.pdf (3.415Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA