JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Causal Mechanisms of Dyslexia Via Connectogram Modeling of Phase Synchrony.

    • Autor
      Rodríguez-Rodríguez, Ignacio; Ortiz-García, AndrésAutoridad Universidad de Málaga; Formoso, Marco A.; Gallego-Molina, Nicolás J.; Luque-Vilaseca, Juan LuisAutoridad Universidad de Málaga
    • Fecha
      2024
    • Palabras clave
      Electrodiagnóstico; Dislexia - Diagnóstico - Proceso de datos
    • Resumen
      This paper introduces connectogram modeling of electroencephalography (EEG) signals as a novel approach to represent causal relationships and information flow between different brain regions. Connectograms are graphical representations that map the connectivity between neural nodes or EEG channels through lines and arrows of varying thickness and directionality. Here, interchannel phase connectivity patterns were analyzed by computing Granger causality to quantify the magnitude and direction of causal effects. The resulting weighted, directed connectograms displayed differences in functional integration between individuals with developmental dyslexia versus fluent readers when processing 4.8 Hz amplitude-modulated noise, designed to elicit speech encoding mechanisms. Machine learning classification was subsequently implemented to distinguish participant groups based on characteristic connectivity fingerprints. The methodology integrates signal filtering, instantaneous phase analysis via Hilbert transform, Granger causality computation between all channel pairs, automated feature selection using novel mutual information filtering, construction of directed weighted connectograms, and Gradient Boosting classification. Classification analysis successfully discriminates connectivity patterns, directly implicating theta and gamma bands (AUC 0.929 and 0.911, respectively) resulting from rhythmic auditory stimulation. Results demonstrated altered cross-regional theta and gamma band oscillatory connectivity in dyslexia during foundational auditory processing, providing perspectives on multisensory and temporal encoding inefficiencies underlying language difficulties
    • URI
      https://hdl.handle.net/10630/30655
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    IWINAC_2024_Connectograms.pdf (3.353Mb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA