JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Pattern recognition frequency-based feature selection with multi-objective discrete evolution strategy for high-dimensional medical datasets

    • Autor
      Nematzadeh, Hossein; García-Nieto, José ManuelAutoridad Universidad de Málaga; Aldana-Montes, José FranciscoAutoridad Universidad de Málaga; Navas-Delgado, IsmaelAutoridad Universidad de Málaga
    • Fecha
      2024-02-17
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Reconocimiento de formas (Informática); Sistemas informáticos
    • Resumen
      Feature selection has a prominent role in high-dimensional datasets to increase classification accuracy, decrease the learning algorithm computational time, and present the most informative features to decision-makers. This paper proposes a two-stage hybrid feature selection for high-dimensional medical datasets: Maximum Pattern Recognition - Multi-objective Discrete Evolution Strategy (MPR-MDES). MPR is a rapid filter ranker that significantly outperforms existing frequency-based rankers in recognizing non-linear patterns, effectively eliminating a majority of non-informative features. Then, the wrapper Multi-objective Discrete Evolution Strategy (MDES) uses the remaining features and obtains sets of solutions which are automatically presented to decision-makers. The experiments conducted on large medical datasets demonstrate that MPR-MDES achieves considerable improvements compared to state-of-the-art methods, in terms of both classification accuracy and dimensionality reduction. In this sense, the proposal successfully performs when presenting informative feature sets to decision-makers. The implementation is available on https://github.com/KhaosResearch/MPR-MDES.
    • URI
      https://hdl.handle.net/10630/30824
    • DOI
      https://dx.doi.org/10.1016/j.eswa.2024.123521
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S0957417424003865-main.pdf (2.399Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA