JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    App-Mohedo®: a mobile app for the management of chronic pelvic pain. A design and development study

    • Autor
      Díaz-Mohedo, EstherAutoridad Universidad de Málaga; Carrillo-León, Antonio LuisAutoridad Universidad de Málaga; Calvache-Mateo, Andrés; Ptak, Magdalena; Romero-Franco, Natalia; Fernández, Juan Carlos
    • Fecha
      2024-03-15
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Informática - Aplicaciones; Dolor pélvico; Pelvis - Tratamiento
    • Resumen
      Background Chronic Pelvic Pain (CPP) has been described as a public health priority worldwide, and it is among the most prevalent and costly healthcare problems. Graded motor imagery (GMI) is a therapeutic tool that has been successfully used to improve pain in several chronic conditions. GMI therapy is divided into three stages: laterality training (LRJT, Left Right Judgement Task), imagined movements, and mirror therapy. No tool that allows working with LRJT in pelvic floor has been developed to date. Objective This research aims to describe the process followed for the development of a highly usable, multi-language and multi-platform mobile application using GMI with LRJT to improve the treatment of patients with CPP. In addition, this will require achieving two other goals: firstly, to generate 550 pelvic floor images and, subsequently, to carry out an empirical study to objectively classify them into different difficulty levels of. This will allow the app to properly organize and plan the different therapy sessions to be followed by each patient. Methodology For the design, evaluation and development of the app, an open methodology of user-centered design (MPIu + a) was applied. Furthermore, to classify and establish the pelvic floor images of the app in different difficulty levels, an observational, cross-sectional study was conducted with 132 volunteers through non-probabilistic sampling. Results On one hand, applying MPIu+a, a total of 5 phases were required to generate an easy-to-use mobile application. On the other hand, the 550 pelvic floor images were classified into 3 difficulty levels (based on the percentage of correct answers and response time used by the participants in the classification process of each image): Level 1 (191 images with Accuracy = 100 % and RT = [0–2.5] seconds); Level 2 (208 images with Accuracy = 75–100 % and RT = [2.5–5] seconds); and Level 3 (151 images with Accuracy = 50–75 % and RT > 5 s)...
    • URI
      https://hdl.handle.net/10630/30878
    • DOI
      https://dx.doi.org/10.1016/j.ijmedinf.2024.105410
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S138650562400073X-main.pdf (4.651Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA