JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Tesis doctorales
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Tesis doctorales
    • Ver ítem

    Semantics in Big Data Analytics.

    • Autor
      Benítez-Hidalgo, Antonio
    • Director/es
      Roldán-García, María del MarAutoridad Universidad de Málaga; Navas-Delgado, IsmaelAutoridad Universidad de Málaga
    • Fecha
      2024
    • Fecha de lectura
      2024-01-24
    • Editorial/Editor
      UMA Editorial
    • Palabras clave
      Lenguajes de programación - Semántica; Datos masivos
    • Resumen
      Through the development of the TITAN platform, we aim to provide a tool for managing the lifecycle of workflows, integrating semantics to facilitate more intelligent and efficient workflows. TITAN was built with a flexible architecture, allowing for the implementation of new functionalities. In this regard, we developed NORA, a tool designed to provide reasoning over large ontologies. Using NORA with TITAN, efficient and scalable reasoning can be performed on semantically rich workflows, leveraging NoSQL database technologies to ensure scalability and reliability. NORA uses Apache Spark as its computational engine to implement inference rules, allowing the reasoning process to be evaluated iteratively until no new inferred knowledge is derived. In the biological domain, we introduce SALON, an ontology that provides a consistent understanding and use of multiple sequence alignments. SALON eases the development of Linked Data repositories to offer uniform access to diverse information essential for bioinformatics researchers. This ontology can also serve as a mediator schema for integrating data from various sources and validating sequence alignments by defining SWRL rules. Furthermore, we explore a methodology to inject semantic knowledge (expressed via ontologies) into analysis algorithms using the META ontology. This ontology allows algorithms to be enriched with domain-specific information, resulting in more informed and accurate decisions. Several use cases demonstrate META's effectiveness in enhancing the analysis process, including its use for mapping domain knowledge and constraints into machine learning models. Through META, algorithms can be guided by expert knowledge and domain-specific considerations.
    • URI
      https://hdl.handle.net/10630/30958
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    TD_BENÍTEZ_HIDALGO, Antonio.pdf (8.197Mb)
    Colecciones
    • Tesis doctorales

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA