JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Numerical adiabatic perturbation theory for the absolute equation

    • Autor
      Garralon-López, Rubén; Rus-Mansilla, Francisco de AsísAutoridad Universidad de Málaga; Villatoro-Machuca, Francisco RománAutoridad Universidad de Málaga
    • Fecha
      2024-03-28
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Perturbación (Matemáticas); Matemáticas aplicadas
    • Resumen
      In physical applications, the absolute equation should be preferred to the widely used Rosenau–Hyman equation due to the robustness of its compactons and anticompactons interactions observed in numerical simulations with small hyperviscosity. In order to understand the effect of the hyperviscosity in solutions with multiple compactons of the equation, the adiabatic perturbation theory has been applied. For a single compacton, this theory can be solved analytically showing that the second invariant decreases for smaller than a critical value, as expected for a dissipative perturbation, but increases otherwise. This analytical prediction is in good agreement with the numerical results. In order to predict the evolution of the second invariant in time as a function of the hyperviscosity parameter for general solutions of the equation, a numerical implementation of the adiabatic perturbation theory has been developed. This adiabatic numerical prediction agrees with the evolution of the second invariant in the propagation of a single compacton, the generation of compacton trains from a truncated cosine initial condition, and compacton–compacton chase collisions. However, discrepancies emerge in other scenarios, such as the generation of a compacton train from a dilated compacton and in compacton–anticompacton chase collisions. Our findings support the use of the numerical adiabatic perturbation theory for analyzing the evolution of invariants due to hyperviscosity in multi-compacton simulations
    • URI
      https://hdl.handle.net/10630/31023
    • DOI
      https://dx.doi.org/10.1016/j.matcom.2024.03.031
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Numerical adiabatic.pdf (8.558Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA