JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    AutomAdapt: Zero Touch Configuration of 5G QoS Flows Extended for Time-Sensitive Networking.

    • Autor
      Luque Schempp, Francisco; Panizo-Jaime, LauraAutoridad Universidad de Málaga; Gallardo-Melgarejo, María del MarAutoridad Universidad de Málaga; Merino-Gómez, PedroAutoridad Universidad de Málaga
    • Fecha
      2023
    • Editorial/Editor
      IEEE
    • Palabras clave
      Sistemas de comunicaciones inalámbricos; Aprendizaje automático (Inteligencia artificial); Sistemas autoorganizativos
    • Resumen
      The aim of IEEE Time-Sensitive Networking (TSN) standards is to grant deterministic communication in traditional Ethernet networks for Industry 4.0. Insofar as the use cases in the Factory need some mobility, the extension of the TSN capabilities over the fifth-generation (5G) cellular network is the next step. Some challenges in TSN over 5G, such as TSN translators time synchronization functionality, are well defined in the standards, even if they have not yet been addressed in the market. However other challenges, such as the dynamic configuration of the entire network (or part of the it) based on quality requirements of the current TSN traffic pattern, are defined at a very high level and delegated to vendors for implementation. This paper addresses this challenge, using an Automata Learning approach to monitor and reconfigure the end-to-end 5G QoS flow to keep the quality of a TSN session within the required values. Additionally, algorithms are provided to build the automata from network data and predict potential deviations of the requirements to meet the expected quality. Moreover, this work presents a functional TSN over a 5G testbed where the algorithms have been tested, demonstrating that the proposed solution achieves an improvement of around 40% compared to the usual operation of the network.
    • URI
      https://hdl.handle.net/10630/31085
    • DOI
      https://dx.doi.org/10.1109/ACCESS.2023.3302264
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    AutomAdapt_Zero_Touch_Configuration_of_5G_QoS_Flows_Extended_for_Time-Sensitive_Networking.pdf (2.699Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA