The exact and approximate solutions of singular integro-differential equations relating to the problems of interaction of an elastic thin finite or infinite non-homogeneous patch with a plate are considered, provided that the materials of plate and patch possess the creep property. Using the method of orthogonal polynomials the problem is reduced to the infinite system of Volterra integral equations, and using the method of integral transformations this problem is reduced to the different boundary value problems of the theory of analytic functions. An asymptotic analysis is also performed.