JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Rician noise estimation for 3D Magnetic Resonance Images based on Benford's Law.

    • Autor
      Maza Quiroga, Rosa María; Thurnhofer-Hemsi, Karl; López-Rodríguez, DomingoAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga
    • Fecha
      2021
    • Editorial/Editor
      Springer Nature
    • Palabras clave
      Imágenes por resonancia magnética - Ruido
    • Resumen
      In this paper, a novel method to estimate the level of Rician noise in magnetic resonance images is presented. We hypothesize that noiseless images follow Benford's law, that is, the probability distribution of the first digit of the image values is logarithmic. We show that this is true when we consider the raw acquired image in the frequency domain. Two measures are then used to quantify the (dis)similarity between the actual distribution of the fi rst digits and the more theoretical Benford's law: the Bhattacharyya coefficient and the Kullback-Leibler divergence. By means of these measures, we show that the amount of noise directly affects the distribution of the fi rst digits, thereby making it deviate from Benford's law. In addition, in this work, these findings are used to design a method to estimate the amount of Rician noise in an image. The utilization of supervised machine learning techniques (linear regression, polynomial regression, and random forest) allows predicting the parameters of the Rician noise distribution using the dissimilarity between the measured distribution and Benford's law as the input variable for the regression. In our experiments, testing over magnetic resonance images of 75 individuals from four different repositories, we empirically show that these techniques are able to precisely estimate the noise level present in the test T1 images.
    • URI
      https://hdl.handle.net/10630/31428
    • DOI
      https://dx.doi.org/10.1007/978-3-030-87231-1_33
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Preprint_MICCAI.pdf (809.4Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA