JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Cross-dataset evaluation of wearable fall detection systems using data from real falls and long-term monitoring of daily life

    • Autor
      Silva, Carlos A.; Casilari-Pérez, EduardoAutoridad Universidad de Málaga; García-Bermúdez, Rodolfo
    • Fecha
      2024
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Detectores; Aprendizaje automático (Inteligencia artificial)
    • Resumen
      The evaluation of fall detection systems based on wearables is controversial as most studies in the literature benchmark their proposals against falls that are simulated by experimental subjects under unrealistic laboratory conditions. In order to systematically investigate the suitability of this procedure, this paper evaluates a wide set of artificial intelligence algorithms used for fall detection, when trained with a large number of datasets containing acceleration samples captured during the emulation of falls and ordinary movements and then tested with the signals of both actual falls and long-term traces collected from the constant monitoring of users during their daily routines. The results, based on a large number of repositories, show a remarkable degradation in all performance metrics (sensitivity, specificity and false alarm hourly rate) with respect to the typical case in which the detectors are tested with the same types of laboratory movements for which they were trained.
    • URI
      https://hdl.handle.net/10630/31456
    • DOI
      https://dx.doi.org/https://doi.org/10.1016/j.measurement.2024.114992
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S0263224124008777-main.pdf (2.574Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA