JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Words of analytic paraproducts on Hardy and weighted Bergman spaces.

    • Autor
      Aleman, Alexandru; Casante, Carme; Fàbrega, Joan; Pascuas, Daniel; Peláez-Márquez, José ÁngelAutoridad Universidad de Málaga
    • Fecha
      2024
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Hilbert, Espacio de; Hardy, Espacios de
    • Resumen
      For a fixed analytic function g on the unit disc, we consider the analytic paraproducts induced by g, which are formally defined by , , and . We are concerned with the study of the boundedness of operators in the algebra generated by the above operators acting on Hardy, or standard weighted Bergman spaces on the disc. The general question is certainly very challenging, since operators in are finite linear combinations of finite products (words) of which may involve a large amount of cancellations to be understood. The results in [1] show that boundedness of operators in a fairly large subclass of can be characterized by one of the conditions , or belongs to or the Bloch space, for some integer . However, it is also proved that there are many operators, even single words in whose boundedness cannot be described in terms of these conditions. The present paper provides a considerable progress in this direction. Our main result provides a complete quantitative characterization of the boundedness of an arbitrary word in in terms of a “fractional power” of the symbol g, that only depends on the number of appearances of each of the letters in the given word.
    • URI
      https://hdl.handle.net/10630/31613
    • DOI
      https://dx.doi.org/10.1016/j.matpur.2024.05.002
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S0021782424000497-main.pdf (671.2Kb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA