JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    The Goertzel algorithm for the extraction of texture features

    • Autor
      Lora Rivera, Raúl; Oballe-Peinado, ÓscarAutoridad Universidad de Málaga; Trujillo-León, AndrésAutoridad Universidad de Málaga; Vidal-Verdú, FernandoAutoridad Universidad de Málaga
    • Fecha
      2024
    • Editorial/Editor
      IEEE
    • Palabras clave
      Algoritmos; Fourier, Transformaciones de; Detectores; Proceso de vectores (Informática); Matrices lógicas programables por el usuario
    • Resumen
      The detection of the properties of objects is essential to deal with the manipulation of objects with artificial hands and grippers. In particular, texture detection is a common challenge in robotics. In the quest for smooth and natural manipulation, response times in the order of milliseconds are needed. In a context where the number of sensors and actuators integrated in the system increases, it becomes necessary to pre-process in local electronics. This pre-processing reduces the number of interconnecting wires that hinder movement, and also the computational load and data traffic. This paper proposes the use of the Goertzel algorithm as an alternative to the common use of FFT to obtain the features used to identify a texture. The lower computational cost of the Goertzel algorithm translates into lower resource and power consumption. This lower cost is observed for a limited number of features to be extracted from the raw signal, which can be assumed for an application that seeks to obtain main features of the manipulated object, and not an exhaustive characterisation of the object. This paper shows that a set of 12 textures can be classified with 84.8% accuracy by extracting features that give the signal power for 16 selected frequencies in the spectrum.
    • URI
      https://hdl.handle.net/10630/31712
    • DOI
      https://dx.doi.org/10.1109/LRA.2024.3416790
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    The_Goertzel_Algorithm_for_the_Extraction_of_Texture_Features.pdf (2.130Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA