JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Learning-based State Estimation in Distribution Systems with Limited Real-Time Measurements.

    • Autor
      Gómez de la Varga, J.; Pineda-Morente, SalvadorAutoridad Universidad de Málaga; Morales-González, Juan MiguelAutoridad Universidad de Málaga; Porras, Álvaro
    • Fecha
      2024-01
    • Palabras clave
      Aprendizaje automático
    • Resumen
      The task of state estimation in active distribution systems faces a major challenge due to the integration of different measurements with multiple reporting rates. As a result, distribution systems are essentially unobservable in real time, indicating the existence of multiple states that result in identical values for the available measurements. Certain existing approaches utilize historical data to infer the relationship between real-time available measurements and the state. Other learning-based methods aim to estimate the measurements acquired with a delay, generating pseudo-measurements. Our paper presents a methodology that utilizes the outcome of an unobservable state estimator to exploit information on the joint probability distribution between real-time available measurements and delayed ones. Through numerical simulations conducted on a realistic distribution grid with insufficient real-time measurements, the proposed procedure showcases superior performance compared to existing state forecasting approaches and those relying on inferred pseudo-measurements.
    • URI
      https://hdl.handle.net/10630/32039
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    JGV_EURO24.pdf (1.024Mb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA