Mostrar el registro sencillo del ítem

dc.contributor.authorBartolo, Rossella
dc.date.accessioned2024-07-12T10:35:12Z
dc.date.available2024-07-12T10:35:12Z
dc.date.created2024
dc.date.issued2024
dc.identifier.urihttps://hdl.handle.net/10630/32086
dc.description.abstractWe study the geodesic connectedness of a globally hyperbolic spacetime (M, g) admitting a complete smooth Cauchy hypersurface S and endowed with a complete causal Killing vector field K. The main assumptions are that the kernel distribution D of the one-form induced by K on S is non-integrable and that the gradient of g(K, K) is orthogonal to D. We approximate the metric g by metrics gε smoothly depending on a real parameter ε and admitting K as a timelike Killing vector field. A known existence result for geodesics of such type of metrics provides a sequence of approximating solutions, joining two given points, of the geodesic equations of (M, g) and whose Lorentzian energy turns out to be bounded thanks to an argument involving trajectories of some affine control systems related with D.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.language.isoenges_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectRiemann, Geometría dees_ES
dc.subject.otherGlobally hyperbolic spacetimees_ES
dc.subject.otherCausal Killing vector fieldes_ES
dc.titleGeodesic connectedness of a spacetime with a causal Killing vector field.es_ES
dc.typeconference outputes_ES
dc.centroFacultad de Cienciases_ES
dc.relation.eventtitleGeodesic connectedness of a spacetime with a causal Killing vector fieldes_ES
dc.relation.eventplaceMálaga, Españaes_ES
dc.relation.eventdate30 de abril 2024es_ES
dc.departamentoÁlgebra, Geometría y Topología
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem