JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Intelligent Testing of Traffic Light Programs: Validation in Smart Mobility Scenarios.

    • Autor
      Ferrer-Urbano, Francisco JavierAutoridad Universidad de Málaga; García-Nieto, José ManuelAutoridad Universidad de Málaga; Alba-Torres, EnriqueAutoridad Universidad de Málaga; Chicano-García, José-FranciscoAutoridad Universidad de Málaga
    • Fecha
      2016-02-08
    • Editorial/Editor
      Wiley
    • Palabras clave
      Tráfico - Regulación; Optimización matemática
    • Resumen
      In smart cities, the use of intelligent automatic techniques to find efficient cycle programs of traffic lights is becoming an innovative front for traffic flow management. However, this automatic programming of traffic lights requires a validation process of the generated solutions, since they can affect the mobility (and security) of millions of citizens. In this paper, we propose a validation strategy based on genetic algorithms and feature models for the automatic generation of different traffic scenarios checking the robustness of traffic light cycle programs.We have concentrated on an extensive urban area in the city ofMalaga (in Spain), in which we validate a set of candidate cycle programs generated bymeans of four optimization algorithms: Particle SwarmOptimization for Traffic Lights, Differential Evolution for Traffic Lights, random search, and Sumo Cycle Program Generator.We can test the cycles of traffic lights considering the different states of the city, weather, congestion, driver expertise, vehicle’s features, and so forth, but prioritizing the most relevant scenarios among a large and varied set of them. The improvement achieved in solution quality is remarkable, especially for CO2 emissions, in which we have obtained a reduction of 126.99% compared with the experts’ solutions.
    • URI
      https://hdl.handle.net/10630/32102
    • DOI
      https://dx.doi.org/10.1155/2016/3871046
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Mathematical Problems in Engineering - 2016 - Ferrer - Intelligent Testing of Traffic Light Programs Validation in Smart.pdf (1.565Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA