Mostrar el registro sencillo del ítem

dc.contributor.authorBurgueño Romero, Antonio Manuel
dc.contributor.authorBarba-González, Cristóbal 
dc.contributor.authorAldana-Montes, José Francisco 
dc.date.accessioned2024-09-11T08:04:15Z
dc.date.available2024-09-11T08:04:15Z
dc.date.issued2024-08
dc.identifier.citationAntonio M. Burgueño-Romero, Cristóbal Barba-González, José F. Aldana-Montes, Big Data-driven MLOps workflow for annual high-resolution land cover classification odels, Future Generation Computer Systems, Volume 163, 2025, 107499, ISSN 0167-739X
dc.identifier.urihttps://hdl.handle.net/10630/32514
dc.description.abstractDeveloping an annual and global high-resolution land cover map is one of the most ambitious tasks in remote sensing, with increasing importance due to the continual rise in validated data and satellite imagery. The success of land cover classification models largely hinges on the data quality, coupled with the application of Big Data techniques and distributed computing. This is essential for efficiently processing the extensive volume of available satellite data. However, maintaining the lifecycle of several annual Machine Learning models presents a complex challenge. The rise of Machine Learning Operations offers an opportunity to automate the maintenance of these models, a feature particularly beneficial in systems that require generating new models each year alongside the continuous integration of validated data. This article details the development of an end-to-end MLOps workflow, meticulously integrating land cover classification models that employ Big Data strategies for processing large-scale, high-resolution spatial data. The workflow is designed within a Kubernetes environment, achieving on-demand auto-scaling, distributed computing, and load balancing. This integration demonstrates the practicality and efficiency of managing and deploying models that treat satellite imagery in an automated, scalable framework, thus marking a significant advancement in remote sensing and MLOps.es_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga / CBUAes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectDatos masivoses_ES
dc.subjectTeledetecciónes_ES
dc.subject.otherMLOpses_ES
dc.subject.otherLand coveres_ES
dc.subject.otherBig Dataes_ES
dc.subject.otherKuberneteses_ES
dc.subject.otherRemote sensinges_ES
dc.title⁠Big Data-driven MLOps workflow for annual high-resolution land cover classification modelses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.identifier.doi10.1016/j.future.2024.107499
dc.rights.ccAtribución-NoComercial 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial 4.0 Internacional