Mostrar el registro sencillo del ítem

dc.contributor.authorJiménez-Cordero, María Asunción 
dc.contributor.authorMorales-González, Juan Miguel 
dc.contributor.authorPineda-Morente, Salvador 
dc.date.accessioned2024-09-19T10:47:11Z
dc.date.available2024-09-19T10:47:11Z
dc.date.issued2021
dc.identifier.citationAsunción Jiménez-Cordero, Juan Miguel Morales, Salvador Pineda, A novel embedded min-max approach for feature selection in nonlinear Support Vector Machine classification, European Journal of Operational Research, Volume 293, Issue 1, 2021, Pages 24-35, ISSN 0377-2217, https://doi.org/10.1016/j.ejor.2020.12.009. (https://www.sciencedirect.com/science/article/pii/S0377221720310195)es_ES
dc.identifier.urihttps://hdl.handle.net/10630/32672
dc.description.abstractIn recent years, feature selection has become a challenging problem in several machine learning fields, such as classification problems. Support Vector Machine (SVM) is a well-known technique applied in classification tasks. Various methodologies have been proposed in the literature to select the most relevant features in SVM. Unfortunately, all of them either deal with the feature selection problem in the linear classification setting or propose ad-hoc approaches that are difficult to implement in practice. In contrast, we propose an embedded feature selection method based on a min-max optimization problem, where a trade-off between model complexity and classification accuracy is sought. By leveraging duality theory, we equivalently reformulate the min-max problem and solve it without further ado using off-the-shelf software for nonlinear optimization. The efficiency and usefulness of our approach are tested on several benchmark data sets in terms of accuracy, number of selected features and interpretability.es_ES
dc.language.isospaes_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectMatemáticas aplicadases_ES
dc.subject.otherMachine learninges_ES
dc.subject.otherMin-max optimizationes_ES
dc.subject.otherDuality theoryes_ES
dc.subject.otherFeature selectiones_ES
dc.subject.otherNonlinear Support vector machine classificationes_ES
dc.titleA novel embedded min-max approach for feature selection in nonlinear Support Vector Machine classificationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.identifier.doi10.1016/j.ejor.2020.12.009
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersiones_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem