JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Modelling the distribution of solar spectral irradiance using data mining techniques

    • Autor
      Moreno-Sáez, Rafael JesúsAutoridad Universidad de Málaga; Mora-López, LlanosAutoridad Universidad de Málaga
    • Fecha
      2013
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Energía fotovoltaica
    • Resumen
      A procedure for modelling the distribution of solar spectral irradiance is proposed. It uses both statistical and data mining techniques. As a result, it is possible to simulate solar spectral irradiance distribution using some astronomical parameters and the meteorological parameters solar irradiance, temperature and humidity. With these parameters, the average photon energy and the normalization factor, which characterise the solar spectra, are estimated. First, the Kolmogorov–Smirnov two-sample test is used to analyse and compare all measured spectra. The k-means data mining technique is subsequently used to cluster all measurements. We found that three clusters are enough to characterise all observed spectra. Finally, an artificial neural network and a multivariate linear regression are estimated to simulate the solar spectral distribution matching certain meteorological parameters. The results obtained show that over 99.98% of cumulative probability distribution functions of measured spectra are the same as simulated ones.
    • URI
      https://hdl.handle.net/10630/32732
    • DOI
      https://dx.doi.org/10.1016/j.envsoft.2013.12.002
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    kmeansSolarSpectralDistributionCorregido.pdf (291.9Kb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA