JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    On how to improve tracklet-based gait recognition systems

    • Autor
      Marín-Jiménez, Manuel J.; Castro Payán, Francisco Manuel; Carmona-Poyato, Ángel; Guil-Mata, NicolásAutoridad Universidad de Málaga
    • Fecha
      2015-12-15
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Reconocimiento de formas (Informática); Hombre - Identificación
    • Resumen
      Abstract Recently, short-term dense trajectories features (DTF) have shown state-of-the-art results in video recognition and retrieval. However, their use has not been extensively studied on the problem of gait recognition. Therefore, the goal of this work is to propose and evaluate diverse strategies to improve recognition performance in the task of gait recognition based on DTF. In particular, this paper will show that (i) the proposed RootDCS descriptor improves on DCS in most tested cases; (ii) selecting relevant trajectories in an automatic way improves the recognition performance in several situations; (iii) applying a metric learning technique to reduce dimensionality of feature vectors improves on standard PCA; and, (iv) binarization of low-dimensionality feature vectors not only reduces storage needs but also improves recognition performance in many cases. The experiments are carried out on the popular datasets CASIA, parts B and C, and TUM-GAID showing improvement on state-of-the-art results for most scenarios.
    • URI
      https://hdl.handle.net/10630/32738
    • DOI
      https://dx.doi.org/https://doi.org/10.1016/j.patrec.2015.08.025
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    prl2015web.pdf (2.343Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA