JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Deep learning-based video surveillance system managed by low cost hardware and panoramic cameras

    • Autor
      Benito-Picazo, Jesús; Domínguez-Merino, EnriqueAutoridad Universidad de Málaga; Palomo-Ferrer, Esteban JoséAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga
    • Fecha
      2020
    • Editorial/Editor
      IOS Press
    • Palabras clave
      Redes neuronales (Informática)
    • Resumen
      The design of automated video surveillance systems often involves the detection of agents which exhibit anomalous or dangerous behavior in the scene under analysis. Models aimed to enhance the video pattern recognition abilities of the system are commonly integrated in order to increase its performance. Deep learning neural networks are found among the most popular models employed for this purpose. Nevertheless, the large computational demands of deep networks mean that exhaustive scans of the full video frame make the system perform rather poorly in terms of execution speed when implemented on low cost devices, due to the excessive computational load generated by the examination of multiple image windows. This work presents a video surveillance system aimed to detect moving objects with abnormal behavior for a panoramic 360°surveillance camera. The block of the video frame to be analyzed is determined on the basis of a probabilistic mixture distribution comprised by two mixture components. The first component is a uniform distribution, which is in charge of a blind window selection, while the second component is a mixture of kernel distributions. The kernel distributions generate windows within the video frame in the vicinity of the areas where anomalies were previously found. This contributes to obtain candidate windows for analysis which are close to the most relevant regions of the video frame, according to the past recorded activity. A Raspberry Pi microcontroller based board is employed to implement the system. This enables the design and implementation of a system with a low cost, which is nevertheless capable of performing the video analysis with a high video frame processing rate.
    • URI
      https://hdl.handle.net/10630/33021
    • DOI
      https://dx.doi.org/10.3233/ICA-200632
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    preprint.pdf (2.669Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA