JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Methods for interpolating missing data in aerobiological databases

    • Autor
      Picornell Rodríguez, Antonio; Oteros, Jose; Ruiz-Mata, Rocío; Recio-Criado, María MartaAutoridad Universidad de Málaga; Trigo-Pérez, María del MarAutoridad Universidad de Málaga; Martínez-Bracero, Moisés; Lara, Beatriz; Serrano-García, A.; Galán, Carmen; García-Mozo, Herminia; Alcázar, Purificación; Pérez-Badia, Rosa; Cabezudo-Artero, BaltasarAutoridad Universidad de Málaga; Romero-Morte, Jorge; Rojo, Jesús
    • Fecha
      2021-05-28
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Análisis de series temporales
    • Resumen
      The availability of extensive environmental time series is usually laborious and difficult, and sometimes unexpected failures are not detected until samples are processed. Consequently, environmental databases frequently have some gaps with missing data in it. Applying an interpolation method before starting the data analysis can be a good solution in order to complete this missing information. Nevertheless, there are several different approaches whose accuracy should be considered and compared. In this study, data from 6 aerobiological sampling stations were used as an example of environmental data series to assess the accuracy of different interpolation methods. For that, observed daily pollen/spore concentration data series were randomly removed, interpolated by using different methods and then, compared with the observed data to measure the errors produced. Different periods, gap sizes, interpolation methods and bioaerosols were considered in order to check their influence in the interpolation accuracy. The moving mean interpolation method obtained the highest success rate as average. By using this method, a success rate of the 70% was obtained when the risk classes used in the alert systems of the pollen information platforms were taken into account. In general, errors were mostly greater when there were high oscillations in the concentrations of biotic particles during consecutive days. That is the reason why the pre-peak and peak periods showed the highest interpolation errors. The errors were also higher when gaps longer than 5 days were considered. So, for completing long periods of missing data, it would be advisable to test other methodological approaches. A new Variation Index based on the behaviour of the pollen/spore season (measurement of the variability of the concentrations every 2 consecutive days) was elaborated, which allows to estimate the potential error before the interpolation is applied.
    • URI
      https://hdl.handle.net/10630/33729
    • DOI
      https://dx.doi.org/10.1016/j.envres.2021.111391
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Interpolation Picornell et al integrated changes - RIUMA.pdf (1.262Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA