Several reports have recently contributed to determine the effector inventory of the sequenced strain Pseudomonas syringae pv. phaseolicola (Pph) 1448a. However, the contribution to virulence of most of these effectors remains to be established. Genetic analysis of the contribution to virulence of individual P. syringae effectors has been traditionally hindered by the lack of phenotypes of the corresponding knockout mutants, largely attributed to a high degree of functional redundancy within their effector inventories. In support of this notion, effectors from Pseudomonas syringae pv. tomato (Pto) DC3000 have been classified into redundant effector groups (REGs), analysing virulence of polymutants in the model plant Nicotiana benthamiana. However, using competitive index (CI) as a virulence assay, we were able to establish the individual contribution of AvrPto1PtoDC3000 to Pto DC3000 virulence in tomato, its natural host, even though typically, contribution to virulence of AvrPto1 is only shown in strains also lacking AvrPtoB (also called HopAB2), a member of its REG. This report raised the possibility that even effectors targeting the same defence signalling pathway may have an individual contribution to virulence, and pointed out to CI assays as the means to establish such a contribution for individual effectors. In this work, we have analysed the individual contribution to virulence of the majority of previously uncharacterised Pph 1448a effectors, by monitoring the development of disease symptoms and determining the CI of single knockout mutants at different stages of growth within bean, its natural host. Despite their potential functional redundancy, we have found individual contributions to virulence for six out of the fifteen effectors analysed.