Mostrar el registro sencillo del ítem

dc.contributor.authorGandarias Palacios, Juan Manuel
dc.contributor.authorGómez-de-Gabriel, Jesús Manuel 
dc.contributor.authorGarcía-Cerezo, Alfonso José 
dc.date.accessioned2024-09-30T10:39:18Z
dc.date.available2024-09-30T10:39:18Z
dc.date.issued2018-02-26
dc.identifier.citationGandarias, J.M.; Gómez-de-Gabriel, J.M.; García-Cerezo, A.J. Enhancing Perception with Tactile Object Recognition in Adaptive Grippers for Human–Robot Interaction. Sensors 2018, 18, 692. https://doi.org/10.3390/s18030692es_ES
dc.identifier.urihttps://hdl.handle.net/10630/34013
dc.description.abstractThe use of tactile perception can help first response robotic teams in disaster scenarios, where visibility conditions are often reduced due to the presence of dust, mud, or smoke, distinguishing human limbs from other objects with similar shapes. Here, the integration of the tactile sensor in adaptive grippers is evaluated, measuring the performance of an object recognition task based on deep convolutional neural networks (DCNNs) using a flexible sensor mounted in adaptive grippers. A total of 15 classes with 50 tactile images each were trained, including human body parts and common environment objects, in semi-rigid and flexible adaptive grippers based on the fin ray effect. The classifier was compared against the rigid configuration and a support vector machine classifier (SVM). Finally, a two-level output network has been proposed to provide both object-type recognition and human/non-human classification. Sensors in adaptive grippers have a higher number of non-null tactels (up to 37% more), with a lower mean of pressure values (up to 72% less) than when using a rigid sensor, with a softer grip, which is needed in physical human–robot interaction (pHRI). A semi-rigid implementation with 95.13% object recognition rate was chosen, even though the human/non-human classification had better results (98.78%) with a rigid sensor.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectSistemas hombre-máquinaes_ES
dc.subjectDetectoreses_ES
dc.subjectVisión artificial (Robótica)es_ES
dc.subject.otherAdaptive gripperes_ES
dc.subject.otherTactile sensorses_ES
dc.subject.otherHuman-robot interactiones_ES
dc.subject.otherObject recognitiones_ES
dc.titleEnhancing Perception with Tactile Object Recognition in Adaptive Grippers for Human–Robot Interaction.es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.centroEscuela de Ingenierías Industrialeses_ES
dc.identifier.doi10.3390/s18030692
dc.rights.ccAttribution 4.0 Internacional
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 Internacional