JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    On the use of the Lp distance in reference point-based approaches for multiobjective optimization

    • Autor
      Luque, Mariano; Ruiz, Ana B.; Saborido, Rubén; Marcenaro-Gutiérrez, Óscar D.
    • Fecha
      2015
    • Editorial/Editor
      Springer
    • Palabras clave
      Programación evolutiva (Informática)
    • Resumen
      Reference point-based methods are very useful techniques for solving multiobjective optimization problems. In these methods, the most commonly used achievement scalarizing functions are based on the Tchebychev distance (minmax approach), which generates every Pareto optimal solution in any multiobjective optimization problem, but does not allow compensation among the deviations to the reference values given that it minimizes the value of the highest deviation. At the same time, for any 1<=p<=inf, compromise programming minimizes the Lp distance to the ideal objective vector from the feasible objective region. Although the ideal objective vector can be replaced by a reference point, achievable reference points are not supported by this approach, and special care must be taken in the unachievable case. In this paper, for 1<=p<inf, we propose a new scheme based on the Lp distance, in which different single-objective optimization problems are designed and solved depending on the achievability of the reference point. The formulation proposed allows different compensation degrees among the deviations to the reference values. It is proven that, in the achievable case, any optimal solution obtained is efficient, and, in the unachievable one, it is at least weakly efficient, although it is assured to be efficient if an augmentation term is added to the new formulation. Besides, we suggest an interactive algorithm where the new formulation is embedded. Finally, we show the empirical advantages of the new formulation by its application to both numerical problems and a real multiobjective optimization problem, for achievable and unachievable reference points.
    • URI
      https://hdl.handle.net/10630/34057
    • DOI
      https://dx.doi.org/https://doi.org/10.1007/s10479-015-2008-0
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Use_Lp_Reference_point_approaches_revised2.pdf (1.260Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA