JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Time-variant gas distribution mapping with obstacle information

    • Autor
      González-Monroy, JavierAutoridad Universidad de Málaga; Blanco-Claraco, José Luis; Gonzalez-Jimenez, Antonio Javier
    • Fecha
      2015-05-08
    • Editorial/Editor
      Springer
    • Palabras clave
      Robots autónomos; Gas -- Distribución
    • Resumen
      This paper addresses the problem of estimating the spatial distribution of volatile substances using a mobile robot equipped with an electronic nose (e-nose). Our work contributes an effective solution to two important problems that have been disregarded so far: First, obstacles in the environment (walls, furniture, ...) do affect the gas spatial distribution. Second, when combining odor measurements taken at different instants of time, their ’ages’ must be taken into account to model the ephemeral nature of gas distributions. In order to incorporate these two characteristics into the mapping process we propose modeling the spatial distribution of gases as a Gaussian Markov random field (GMRF). This mathematical framework allows us to consider both: (i) the vanishing information of gas readings by means of a time-increasing uncertainty in sensor measurements, and (ii) the influence of objects in the environment by means of correlations among the different areas. Experimental validation is provided with both, simulated and real-world datasets, demonstrating the out-performance of our method when compared to previous standard techniques in gas mapping.
    • URI
      https://hdl.handle.net/10630/34294
    • DOI
      http://dx.doi.org/10.1007/s10514-015-9437-0
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    2015_GDM_TimeVariant_Obstacles_AutonomousRobots.pdf (6.559Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA