Mostrar el registro sencillo del ítem

dc.contributor.authorKhatib, Emil Jatib
dc.contributor.authorBarco-Moreno, Raquel 
dc.contributor.authorGómez-Andrades, Ana
dc.contributor.authorMuñoz, Pablo
dc.contributor.authorSerrano, Inmaculada
dc.date.accessioned2024-10-04T11:26:16Z
dc.date.available2024-10-04T11:26:16Z
dc.date.issued2015-06-01
dc.identifier.citationKhatib, E. J., Barco, R., Gómez-Andrades, A., Muñoz, P., & Serrano, I. (2015). Data mining for fuzzy diagnosis systems in LTE networks. Expert Systems with Applications, 42(21), 7549–7559.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/34360
dc.description.abstractThe recent developments in cellular networks, along with the increase in services, users and the demand of high quality have raised the Operational Expenditure (OPEX). Self-Organizing Networks (SON) are the solution to reduce these costs. Within SON, self-healing is the functionality that aims to automatically solve problems in the radio access network, at the same time reducing the downtime and the impact on the user experience. Self-healing comprises four main functions: fault detection, root cause analysis, fault compensation and recovery. To perform the root cause analysis (also known as diagnosis), Knowledge-Based Systems (KBS) are commonly used, such as fuzzy logic. In this paper, a novel method for extracting the Knowledge Base for a KBS from solved troubleshooting cases is proposed. This method is based on data mining techniques as opposed to the manual techniques currently used. The data mining problem of extracting knowledge out of LTE troubleshooting information can be considered a Big Data problem. Therefore, the proposed method has been designed so it can be easily scaled up to process a large volume of data with relatively low resources, as opposed to other existing algorithms. Tests show the feasibility and good results obtained by the diagnosis system created by the proposed methodology in LTE networks.es_ES
dc.description.sponsorshipOptimi-Ericsson, Junta de Andalucía (Consejería de Ciencia, Innovación y Empresa, Agencia IDEA, Junta de Andalucía Ref. 59288; Proyecto de Investigación de Excelencia P12-TIC-2905), ERDF.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectSistemas difusoses_ES
dc.subjectMinería de datoses_ES
dc.subjectTelecomunicacioneses_ES
dc.subject.otherSelf-healinges_ES
dc.subject.otherSelf-Organizing Networkses_ES
dc.subject.otherLTEes_ES
dc.subject.otherData mininges_ES
dc.subject.otherData driven learninges_ES
dc.subject.otherSupervised learninges_ES
dc.subject.otherFault managementes_ES
dc.subject.otherFuzzy systemses_ES
dc.subject.otherBig Dataes_ES
dc.titleData mining for fuzzy diagnosis systems in LTE networks.es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.identifier.doi10.1016/j.eswa.2015.05.031
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES
dc.departamentoIngeniería de Comunicaciones


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional