Mostrar el registro sencillo del ítem

dc.contributor.authorVallarino, José G.
dc.contributor.authorKubiszewski‐Jakubiak, S.
dc.contributor.authorRuf, S.
dc.contributor.authorRößner, Margit
dc.contributor.authorTimm, Stefan
dc.contributor.authorBauwe, Hermann
dc.contributor.authorCarrari, Fernando
dc.contributor.authorRentsch, Doris
dc.contributor.authorBock, Ralph
dc.contributor.authorSweetlove, Lee J.
dc.contributor.authorFernie, Alisdair R.
dc.date.accessioned2024-10-08T08:36:19Z
dc.date.available2024-10-08T08:36:19Z
dc.date.issued2020-10-14
dc.identifier.citationVallarino, J.G., Kubiszewski-Jakubiak, S., Ruf, S. et al. Multi-gene metabolic engineering of tomato plants results in increased fruit yield up to 23%. Sci Rep 10, 17219 (2020).es_ES
dc.identifier.urihttps://hdl.handle.net/10630/34474
dc.description.abstractThe capacity to assimilate carbon and nitrogen, to transport the resultant sugars and amino acids to sink tissues, and to convert the incoming sugars and amino acids into storage compounds in the sink tissues, are key determinants of crop yield. Given that all of these processes have the potential to co‐limit growth, multiple genetic interventions in source and sink tissues, plus transport processes may be necessary to reach the full yield potential of a crop. We used biolistic combinatorial co‐transformation (up to 20 transgenes) for increasing C and N flows with the purpose of increasing tomato fruit yield. We observed an increased fruit yield of up to 23%. To better explore the reconfiguration of metabolic networks in these transformants, we generated a dataset encompassing physiological parameters, gene expression and metabolite profiling on plants grown under glasshouse or polytunnel conditions. A Sparse Partial Least Squares regression model was able to explain the combination of genes that contributed to increased fruit yield. This combinatorial study of multiple transgenes targeting primary metabolism thus offers opportunities to probe the genetic basis of metabolic and phenotypic variation, providing insight into the difficulties in choosing the correct combination of targets for engineering increased fruit yield.es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectTomates - Metabolismoes_ES
dc.subjectCultivos - Rendimientoes_ES
dc.subject.otherTomatoes_ES
dc.subject.otherYieldes_ES
dc.subject.otherMetabolic engineeringes_ES
dc.titleMulti‐gene metabolic engineering of tomato plants results in increased fruit yield up to 23%.es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.centroFacultad de Cienciases_ES
dc.identifier.doi10.1038/s41598-020-73709-6
dc.rights.ccAttribution 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 Internacional