JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Fatigue detection during sit-to-stand test based on surface electromyography and acceleration: A case study

    • Autor
      Roldán-Jiménez, CristinaAutoridad Universidad de Málaga; Bennett, Paul; Ortiz-García, AndrésAutoridad Universidad de Málaga; Cuesta-Vargas, AntonioAutoridad Universidad de Málaga
    • Fecha
      2019-09-27
    • Editorial/Editor
      MDPI
    • Palabras clave
      Fatiga (Fisiología)-Medición-Aparatos e instrumentos
    • Resumen
      The latest studies of the 30-second sit-to-stand (30-STS) test aim to describe it by employing kinematic variables, muscular activity, or fatigue through electromyography (EMG) instead of a number of repetitions. The aim of the present study was to develop a detection system based on acceleration measured using a smartphone to analyze fatigue during the 30-STS test with surface electromyography as the criterion. This case study was carried out on one woman, who performed eight trials. EMG data from the lower limbs and trunk muscles, as well as trunk acceleration were recorded. Both signals from eight trials were preprocessed, being averaged and temporarily aligned. The EMG signal was processed, calculating the spectral centroid (SC) by Discrete Fourier Transform, while the acceleration signal was processed by Discrete Wavelet Transform to calculate its energy percentage. Regarding EMG, fatigue in the vastus medialis of the quadriceps appeared as a decrease in SC, with a descending slope of 12% at second 12, indicating fatigue. However, acceleration analysis showed an increase in the percentage of relative energy, acting like fatigue firing at second 19. This assessed fatigue according to two variables of a different nature. The results will help clinicians to obtain information about fatigue using an accessible and inexpensive device, i.e., as a smartphone.
    • URI
      https://hdl.handle.net/10630/34543
    • DOI
      https://dx.doi.org/10.3390/s19194202
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    sensors-fatigue.pdf (1.776Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA