JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Tesis doctorales
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Tesis doctorales
    • Ver ítem

    Automated recommendation of multi-objective optimization algorithms using a knowledge-based approach.

    • Autor
      Aldana Martín, José Francisco
    • Director/es
      Nebro-Urbaneja, Antonio JesúsAutoridad Universidad de Málaga; Roldán-García, María del MarAutoridad Universidad de Málaga
    • Fecha
      2024
    • Fecha de lectura
      2024-09-13
    • Editorial/Editor
      UMA Editorial
    • Palabras clave
      Algoritmos computacionales - Tesis doctorales; Programación heurística
    • Resumen
      This PhD thesis addresses the challenge of developing a tool to provide algorithmic recommendation to end users (experts in the problem domain but not experts in multi-objective algorithms) without the need of a resource-intensive process of auto-configuration. This challenge is faced with an approach based on previous knowledge about the problems. A semantic model, moody, is designed to formally define knowledge in the field of multi-objective optimization with metaheuristics, with a focus on the relevant concepts required to characterize problems and the performance of algorithms. moorphology is developed as a tool to provide landscape characteristics of the search and objective spaces of multi-objective problems. These landscape characteristics are a key factor for the computation of a similarity metric between multi-objective problems, which are a necessity to provide recommendations based on previous knowledge. To generate in an efficient way the required knowledge to implement the recommendation engine, a meta-optimization approach is presented as the software tool Evolver. This tool allows the automatic configuration of metaheuristics by defining it as an optimization problem. Large language models are evaluated for the task of helping domain experts in implementing their problems into an optimization framework for solving them. To solve this problem, a large language model is fine-tuned and embedded into a graphical tool, named moostral, to allow the end user to easily implement their optimization framework into the recommendation system described in this thesis. To connect the previously mentioned elements, a recommendation engine, named recommoonder, is implemented to solve the challenge presented in this thesis. This thesis has a very practical focus, providing open source repositories for all the tools developed in it, allowing their use in the further research lines defined in the last chapter.
    • URI
      https://hdl.handle.net/10630/34986
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    TD_ALDANA_MARTÍN, José Francisco.pdf (17.15Mb)
    Colecciones
    • Tesis doctorales

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA